198 BIBLIOGRAPHY
[63] A. J. Laub, “A Schur method for solving algebraic Riccati equations,” IEEE Trans.
Auto. Control, vol. AC-24, pp. 913–921, 1979.
[64] T. Pappas, A. J. Laub, and N. R. Sandell, “On the numerical solution of the
discrete-time algebraic Riccati equation,” IEEE Trans. Auto. Control, vol. AC-25,
pp. 631–641, 1980.
[65] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms and software
for algebraic Riccati equations,” Proc. IEEE, vol. 72, pp. 1746–1754, 1984.
[66] A. J. Laub, “Invariant subspace methods for the numerical solution of Riccati
Equations,” in The Riccati Equation (S. Bittanti, A. J. Laub, and J. C. Willems,
eds.), pp. 163–196, Springer-Verlag, Berlin, 1991.
[67] G. Zames, “On the input-output stability of nonlinear time-varying feedback
systems, parts I and II.,” IEEE Trans. Auto. Control, vol. AC-11, pp. 228–238 and
465–476, 1966.
[68] J. Doyle, “Analysis of feedback systems with structured uncertainties,” IEE
Proceedings, Part D, vol. 133, pp. 45–56, Mar. 1982.
[69] M. K. H. Fan and A. L. Tits, “Characterization and efficient computation of the
structured singular value,” IEEE Trans. Auto. Control, vol. AC-31, pp. 734–743,
1986.
[70] M. K. H. Fan and A. L. Tits, “m-form numerical range and the computation of the
structured singular value,” IEEE Trans. Auto. Control, vol. AC-33, pp. 284–289,
1988.
[71] J. C. Doyle, A. K. Packard, P. M. Young, R. S. Smith, and M. P. Newlin, “The
structured singular value,” Tech. Rep. NASA-CR-4524, NASA, March 1992.
[72] M. G. Safonov and J. Doyle, “Minimizing conservativeness of robust singular
values,” in Multivariable Control (S. Tzafestas, ed.), New York: Reidel, 1984.
[73] M. K. H. Fan, A. L. Tits, and J. C. Doyle, “Robustness in the presence of joint
parametric uncertainty and unmodeled dynamics,” in Proc. Amer. Control Conf.,
pp. 1195–1200, 1988.
[74] P. M. Young and J. C. Doyle, “Computation of the µ with real and complex
uncertainties,” in Proc. IEEE Control Decision Conf., pp. 1230–1235, 1990.
[75] P. M. Young, M. P. Newlin, and J. C. Doyle, “µ analysis with real parametric
uncertainty,” in Proc. IEEE Control Decision Conf., 1991.