Samsung F8274X Computer Hardware User Manual


 
S3C8275X/F8275X/C8278X/F8278X/C8274X/F8274X INTERRUPT STRUCTURE
5-1
5 INTERRUPT STRUCTURE
OVERVIEW
The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8RC
CPU recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt
level has more than one vector address, the vector priorities are established in hardware. A vector address can be
assigned to one or more sources.
Levels
Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight
possible interrupt levels: IRQ0IRQ7, also called level 0level 7. Each interrupt level directly corresponds to an
interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from
device to device. The S3C8275X/C8278X/C8274X interrupt structure recognizes eight interrupt levels.
The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just
identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is
determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR
settings lets you define more complex priority relationships between different levels.
Vectors
Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The
maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors used for
S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the vector
priorities are set in hardware. S3C8275X/C8278X/C8274X uses twelve vectors.
Sources
A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow.
Each vector can have several interrupt sources. In the S3C8275X/C8278X/C8274X interrupt structure, there are
twelve possible interrupt sources.
When a service routine starts, the respective pending bit should be either cleared automatically by hardware or
cleared "manually" by program software. The characteristics of the source's pending mechanism determine which
method would be used to clear its respective pending bit.