Cypress CY7C1320JV18 Computer Hardware User Manual


 
18-Mbit DDR-II SRAM 2-Word
Burst Architecture
CY7C1316JV18, CY7C1916JV18
CY7C1318JV18, CY7C1320JV18
Cypress Semiconductor Corporation 198 Champion Court San Jose, CA 95134-1709 408-943-2600
Document Number: 001-15271 Rev. *B Revised March 10, 2008
Features
18-Mbit density (2M x 8, 2M x 9, 1M x 18, 512K x 36)
300 MHz clock for high bandwidth
2-word burst for reducing address bus frequency
Double Data Rate (DDR) interfaces
(data transferred at 600 MHz) at 300 MHz
Two input clocks (K and K) for precise DDR timing
SRAM uses rising edges only
Two input clocks for output data (C and C) to minimize clock
skew and flight time mismatches
Echo clocks (CQ and CQ) simplify data capture in high-speed
systems
Synchronous internally self-timed writes
DDR-II operates with 1.5 cycle read latency when the DLL is
enabled
Operates similar to a DDR-I device with 1 cycle read latency in
DLL off mode
1.8V core power supply with HSTL inputs and outputs
Variable drive HSTL output buffers
Expanded HSTL output voltage (1.4V–V
DD
)
Available in 165-Ball FBGA package (13 x 15 x 1.4 mm)
Offered in both Pb-free and non Pb-free packages
JTAG 1149.1 compatible test access port
Delay Lock Loop (DLL) for accurate data placement
Configurations
CY7C1316JV18 – 2M x 8
CY7C1916JV18 – 2M x 9
CY7C1318JV18 – 1M x 18
CY7C1320JV18 – 512K x 36
Functional Description
The CY7C1316JV18, CY7C1916JV18, CY7C1318JV18, and
CY7C1320JV18 are 1.8V Synchronous Pipelined SRAMs
equipped with DDR-II architecture. The DDR-II consists of an
SRAM core with advanced synchronous peripheral circuitry and
a one-bit burst counter. Addresses for read and write are latched
on alternate rising edges of the input (K) clock. Write data is
registered on the rising edges of both K and K
. Read data is
driven on the rising edges of C and C
if provided, or on the rising
edge of K and K
if C/C are not provided. Each address location
is associated with two 8-bit words in the case of CY7C1316JV18
and two 9-bit words in the case of CY7C1916JV18 that burst
sequentially into or out of the device. The burst counter always
starts with a ‘0’ internally in the case of CY7C1316JV18 and
CY7C1916JV18. For CY7C1318JV18 and CY7C1320JV18, the
burst counter takes in the least significant bit of the external
address and bursts two 18-bit words (in the case of
CY7C1318JV18) of two 36-bit words (in the case of
CY7C1320JV18) sequentially into or out of the device.
Asynchronous inputs include an output impedance matching
input (ZQ). Synchronous data outputs (Q, sharing the same
physical pins as the data inputs, D) are tightly matched to the two
output echo clocks CQ/CQ
, eliminating the need to capture data
separately from each individual DDR SRAM in the system
design. Output data clocks (C/C) enable maximum system
clocking and data synchronization flexibility.
All synchronous inputs pass through input registers controlled by
the K or K
input clocks. All data outputs pass through output
registers controlled by the C or C
(or K or K in a single clock
domain) input clocks. Writes are conducted with on-chip
synchronous self-timed write circuitry.
Selection Guide
Description 300 MHz Unit
Maximum Operating Frequency 300 MHz
Maximum Operating Current x8 610 mA
x9 615
x18 655
x36 730
[+] Feedback [+] Feedback