Cypress CY7C1344H Computer Hardware User Manual


 
CY7C1344H
Document #: 001-00211 Rev. *B Page 4 of 15
Functional Overview
All synchronous inputs pass through input registers controlled
by the rising edge of the clock. Maximum access delay from
the clock rise (t
CDV
) is 6.5 ns (133-MHz device).
The CY7C1344H supports secondary cache in systems
utilizing either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium and i486™
processors. The linear burst sequence is suited for processors
that utilize a linear burst sequence. The burst order is
user-selectable, and is determined by sampling the MODE
input. Accesses can be initiated with either the Processor
Address Strobe (ADSP
) or the Controller Address Strobe
(ADSC
). Address advancement through the burst sequence is
controlled by the ADV
input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.
Byte Write operations are qualified with the Byte Write Enable
(BWE
) and Byte Write Select (BW[A:D]) inputs. A Global Write
Enable (GW
) overrides all Byte Write inputs and writes data to
all four bytes. All Writes are simplified with on-chip
synchronous self-timed Write circuitry.
Three synchronous Chip Selects (CE
1
, CE
2
, CE
3
) and an
asynchronous Output Enable (OE
) provide for easy bank
selection and output tri-state control. ADSP is ignored if CE
1
is HIGH.
Single Read Accesses
A single read access is initiated when the following conditions
are satisfied at clock rise: (1) CE
1
, CE
2
, and CE
3
are all
asserted active, and (2) ADSP
or ADSC is asserted LOW (if
the access is initiated by ADSC
, the write inputs must be
deasserted during this first cycle). The address presented to
the address inputs is latched into the address register and the
burst counter/control logic and presented to the memory core.
If the OE input is asserted LOW, the requested data will be
available at the data outputs a maximum to t
CDV
after clock
rise. ADSP
is ignored if CE
1
is HIGH.
Single Write Accesses Initiated by ADSP
This access is initiated when the following conditions are
satisfied at clock rise: (1) CE
1
, CE
2
, CE
3
are all asserted
active, and (2) ADSP
is asserted LOW. The addresses
presented are loaded into the address register and the burst
inputs (GW
, BWE, and BW[A:D]) are ignored during this first
clock cycle. If the write inputs are asserted active (see Write
Cycle Descriptions table for appropriate states that indicate a
Write) on the next clock rise, the appropriate data will be
latched and written into the device. Byte Writes are allowed.
During Byte Writes, BWA
controls DQA and BWB controls
DQB, BWC
controls DQC, and BWD controls DQD. All I/Os
are tri-stated during a Byte Write. Since this is a common I/O
device, the asynchronous OE
input signal must be deasserted
and the I/Os must be tri-stated prior to the presentation of data
to DQs. As a safety precaution, the data lines are tri-stated
once a Write cycle is detected, regardless of the state of OE
.
Single Write Accesses Initiated by ADSC
This write access is initiated when the following conditions are
satisfied at clock rise: (1) CE
1
, CE
2
, and CE
3
are all asserted
active, (2) ADSC
is asserted LOW, (3) ADSP is deasserted
HIGH, and (4) the Write input signals (GW
, BWE, and
BW
[A:D]) indicate a write access. ADSC is ignored if ADSP is
active LOW.
The addresses presented are loaded into the address register
and the burst counter/control logic and delivered to the
memory core. The information presented to DQ[D:A] will be
written into the specified address location. Byte Writes are
allowed. During byte writes, BWA
controls DQA, BWB controls
DQB, BWC
controls DQC, and BWD controls DQD. All I/Os
are tri-stated when a Write is detected, even a Byte Write.
Since this is a common I/O device, the asynchronous OE input
signal must be deasserted and the I/Os must be tri-stated prior
to the presentation of data to DQs. As a safety precaution, the
data lines are tri-stated once a Write cycle is detected,
regardless of the state of OE
.
Burst Sequences
The CY7C1344H provides an on-chip two-bit wraparound
burst counter inside the SRAM. The burst counter is fed by
A[1:0], and can follow either a linear or interleaved burst order.
The burst order is determined by the state of the MODE input.
A LOW on MODE will select a linear burst sequence. A HIGH
on MODE will select an interleaved burst order. Leaving
MODE unconnected will cause the device to default to a inter-
leaved burst sequence.
Sleep Mode
The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CE
s, ADSP, and ADSC must remain
inactive for the duration of t
ZZREC
after the ZZ input returns
LOW.
Interleaved Burst Address Table
(MODE = Floating or V
DD
)
First
Address
A1, A0
Second
Address
A1, A0
Third
Address
A1, A0
Fourth
Address
A1, A0
00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00
Linear Burst Address Table (MODE = GND)
First
Address
A
1
,
A
0
Second
Address
A
1
,
A
0
Third
Address
A
1
,
A
0
Fourth
Address
A
1
,
A
0
00 01 10 11
01 10 11 00
10 11 00 01
11 00 01 10
[+] Feedback