Sharp EL-W506 Calculator User Manual


 
CALCULATION EXAMPLES
EXEMPLES DE CALCUL
ANWENDUNGSBEISPIELE
EJEMPLOS DE CÁLCULO
EXEMPLOS DE CÁLCULO
ESEMPI DI CALCOLO
REKENVOORBEELDEN
PÉLDASZÁMÍTÁSOK
PŘÍKLADY VÝPOČTŮ
RÄKNEEXEMPEL
LASKENTAESIMERKKEJÄ
UDREGNINGSEKSEMPLER
CONTOH-CONTOH PERHITUNGAN
陹ꩥ
PRINTED IN CHINA / IMPRIMÉ EN CHINE / IMPRESO EN CHINA
07HGK (TINSZ1308EHZZ)
1
J
100000
÷
3
=
[NORM1]
j
100000
z
3
=
U
U
33
'
333
.
33333
[FIX: TAB 2]
@
J
1
0
2
33
'
333
.
33
[SCI: SIG 2]
@
J
1
1
2
3
.
3
b
04
[ENG: TAB 2]
@
J
1
2
2
33
.
33
b
03
[NORM1]
@
J
1
3
33
'
333
.
33333
3
÷
1000
=
[NORM1]
j
3
z
1000
=
U
0
.
003
[NORM2]
@
J
1
4
3
.
b
-
03
[NORM1]
@
J
1
3
0
.
003
2
U
2 3
⎯ + ⎯ =
5 4
j
2
W
5
r
+
W
3
r
4
=
3
1
20
U
23
20
U
1
.
15
U
3
1
20
P
3
×
P
5
=
@
*
3
r
k
@
*
5
=
H
15
U
3
.
872983346
P
2
÷
3
+
P
5
÷
5
=
@
*
2
r
z
3
+
@
*
5
r
z
5
=
3
Q
5+5
Q
2
15
U
0
.
918618116
8
2
3
4
×
5
2
=
8
m
S
2
r
&
3
m
4
r
k
5
A
=
63
-
2024
64
U
129599
-
64
U
-
2
'
024
.
984375
o
8
m
S
2
&
3
m
4
k
5
A
=
-
2
'
024
.
984375
U
-
2024
m
63
m
64
U
-
129599
m
64
(12
3
)
1
4
=
(
12
m
3
r
)
m
1
W
4
=
6
.
447419591
o
(
12
m
3
)
m
1
W
4
=
6
.
447419591
8
3
=
8
@
1
=
512
.
p
49
4
p
81
=
@
*
49
r
&
4
@
D
81
=
4
.
o
@
*
49
&
4
@
D
81
=
4
.
3
p
27
=
@
q
27
=
3
.
4!
=
4
@
B
=
24
.
10
P
3
=
10
@
e
3
=
720
.
5
C
2
=
5
@
c
2
=
10
.
500
×
25%
=
500
k
25
@
a
125
.
120
÷
400
=
?%
120
z
400
@
a
30
.
500
+
(500
×
25%)
=
500
+
25
@
a
625
.
400
(400
×
30%)
=
400
&
30
@
a
280
.
|
5
9
|
=
@
W
5
&
9
=
4
.
o
@
W
(
5
&
9
)
=
4
.
θ
=
sin
1
x
,
θ
=
tan
1
x
θ
=
cos
1
x
DEG
90
θ
90 0
θ
180
RAD
π
2
θ
π
2
0
θ
π
GRAD
100
θ
100 0
θ
200
7
F
G
2
8
(
x
2
5)
d
x
j
F
2
u
8
r
;
X
A
&
5
n
=
100
=
138.
n
=
10
l
l
H
10
=
138.
o
j
F
;
X
A
&
5
H
2
H
8
)
=
138.
l
l
H
10
=
138.
1
1
(
x
2
1)
d
x
+
1
3
(
x
2
1)
d
x
=
S
F
S
1
u
1
r
;
X
A
&
1
r
+
F
1
u
3
r
;
X
A
&
1
=
8.
11
6
+
4
=
ANS
j
6
+
4
=
10
.
ANS
+
5
=
+
5
=
15
.
8
×
2
=
ANS
8
k
2
=
16
.
ANS
2
=
A
=
256
.
44
+
37
=
ANS
44
+
37
=
81
.
ANS
=
@
*
=
9
.
12 W k
1 4
3
⎯ + ⎯ =
2 3
j
3
@
k
1
d
2
r
+
W
4
d
3
=
5
4
6
U
29
6
U
4.833333333
o
3
W
1
W
2
+
4
W
3
=
*
4
m
5
m
6
U
29
m
6
U
4.833333333
10
2
3
=
@
Y
2
W
3
=
4.641588834
(
7
5
)
5
=
7
W
5
r
m
5
=
16807
3125
o
7
W
5
m
5
=
16807
m
3125
1
8
3
=
@
q
1
W
8
=
1
2
64
225
=
@
*
64
W
225
=
8
15
2
3
3
4
=
2
@
1
W
3
m
4
=
8
81
o
2
@
1
W
(
3
m
4
)
=
8
m
81
1.2
2.3
=
1
.
2
W
2
.
3
=
12
23
1°2’3”
2
=
1
[
2
[
3
W
2
=
0(31
q
1
.
5
"
1
×
10
3
2
×
10
3
=
1
`
3
W
2
`
3
=
1
2
7 A
j
7
x
A
7
.
4
A
=
4
W
;
A
=
4
7
1.25
+
2
5
=
1
.
25
+
2
W
5
=
13
1
20
U
33
20
U
1
.
65
o
1
.
25
+
2
W
5
=
1
.
65
U
1
m
13
m
20
U
33
m
20
* 4
m
5
m
6 =
5
4
6
13 z r g h / d n 4
p x C
DEC (25) BIN
j
@
/
25
@
z
BIN
11001
HEX (1AC)
@
h
1AC
BIN
@
z
BIN
110101100
PEN
@
r
PEN
3203
OCT
@
g
OCT
654
DEC
@
/
428
.
(1010
100)
×
11
=
[BIN]
@
z
(
1010
&
100
)
k
11
=
BIN
10010
BIN (111)
NEG
d
111
=
BIN
1111111001
HEX (1FF)
+
OCT (512)
=
@
h
1FF
@
g
+
512
=
OCT
1511
HEX (?)
@
h
HEX
349
2FEC
2C9E
M
1
+
) 2000
1901
M
2
M
=
j
x
M
@
h
2FEC
&
2C9E
m
HEX
34
E
2000
&
1901
m
HEX
6
FF
t
M
j
x
M
HEX
A
4
D
1011 AND 101
=
[BIN]
@
z
1011
4
101
=
BIN
1
5A OR C3
=
[HEX]
@
h
5A
p
C3
=
HEX
DB
NOT 10110
=
[BIN]
@
z
n
10110
=
BIN
1111101001
24 XOR 4
=
[OCT]
@
g
24
x
4
=
OCT
20
B3 XNOR 2D
=
[HEX]
@
h
B3
C
2D
=
HEX
FFFFFFFF
61
DEC
@
/
-
159
.
14 [ :
7°31’49.44” [10]
j
7
[
31
[
49
.
44
@
:
663
7
1250
123.678 [60]
123
.
678
@
:
123(40
q
40
.
8
"
3h 30m 45s +
6h 45m 36s = [60]
3
[
30
[
45
+
6
[
45
[
36
=
10(16
q
21
.
"
1234°56’12” +
0°0’34.567” = [60]
1234
[
56
[
12
+
0
[
0
[
34
.
567
=
1234(56
q
47
.
"
3h 45m – 1.69h
= [60]
3
[
45
&
1
.
69
=
@
:
2(3
q
36
.
"
sin 62°12’24”
= [10]
v
62
[
12
[
24
=
0
.
884635235
24° [”]
24
[
N
4
86
q
400
.
1500” [’]
0
[
0
[
1500
N
5
25
.
15 u E H
(
x
= 6
y
= 4
(
r
=
θ
= [°]
j
6
H
4
@
u
r
:
{
:
7
.
211102551
33
.
69006753
(
r
= 14
θ
= 36 [°]
(
x
=
y
=
14
H
36
@
E
X
:
Y
:
11
.
32623792
8
.
228993532
16 K L
V
0
=
15.3 m/s
t
=
10 s
V
0
t
+
1
2
gt
2
=
? m
j
15
.
3
k
10
+
2
@
Z
k
K
03
k
10
A
=
U
643
.
3325
125 yd
=
? m
j
125
@
L
05
=
U
U
114
.
3
Physical constants and metric conversions are shown in the tables.
Les constantes physiques et les conversions des unités sont
indiquées sur les tableaux.
Physikalische Konstanten und metriche Umrechnungen sind in
der Tabelle aufgelistet.
Las constants fi sicas y conversiones métricas son mostradas
en las tables.
Constantes fi sicas e conversões métricas estão mostradas nas
tablelas.
La constanti fi siche e le conversioni delle unità di misura vengono
mostrate nella tabella.
De natuurconstanten en metrische omrekeningen staan in de
tabellen hiernaast.
A fi zikai konstansok és a metrikus átváltások a táblázatokban
találhatók.
Fyzikální konstanty a převody do metrické soustavy jsou uvedeny
v tabulce.
Fysikaliska konstanter och metriska omvandlingar visas i tabellerna.
Fysikaaliset vakiot ja metrimuunnokset näkyvät taulukoista.
Fysiske konstanter og metriske omskrivninger vises i tabellen.
Konstanta fi sika dan konversi metrik diperlihatkan di dalam tabel.
斲殯
͑
儆垫穢
͑
恂庲
͑
旇朞
͑
͑
埮氊
͑
筞斶
͑
愯憛汆
͑
埪汒
͑
祢歆
͑
償枻城埪͟
K
01–52
01: c, c
0
(m
s
–1
)
19:
µ
B
(J
T
–1
)
37:
eV
(J)
02:
G
(m
3
kg
–1
s
–2
)
20:
µ
e
(J
T
–1
)
38:
t
(K)
03:
g
n
(m
s
–2
)
21:
µ
N
(J
T
–1
)
39:
AU
(m)
04:
m
e
(kg)
22:
µ
p
(J
T
–1
)
40:
pc
(m)
05:
m
p
(kg)
23:
µ
n
(J
T
–1
)
41: M(
12
C)
(kg
mol
–1
)
06:
m
n
(kg)
24:
µ
µ
(J
T
–1
)
42:
h
-
(J s)
07:
m
µ
(kg)
25:
λ
c
(m)
43:
E
h
(J)
08:
1u
(kg)
26:
λ
c
,
p
(m)
44:
G
0
(s)
09: e
(C)
27:
σ
(W
m
–2
K
–4
)
45:
α
–1
10: h
(J
s)
28:
N
A
, L
(mol
–1
)
46:
m
p
/m
e
11: k
(J
K
–1
)
29:
V
m
(m
3
mol
–1
)
47:
M
u
(kg
mol
–1
)
12:
µ
0
(N
A
–2
)
30: R
(J
mol
–1
K
–1
)
48:
λ
c
,
n
(m)
13:
ε
0
(F
m
–1
)
31:
F
(C
mol
–1
)
49:
c
1
(W
m
2
)
14:
r
e
(m)
32: R
K
()
50:
c
2
(m
K)
15:
α
33: –e/m
e
(C
kg
–1
)
51:
Z
0
()
16:
a
0
(m)
34:
h/2m
e
(m
2
s
–1
) 52: atm (Pa)
17:
R
(m
–1
)
35:
γ
p
(s
–1
T
–1
)
18:
Φ
0
(Wb)
36:
K
J
(Hz
V
–1
)
x
@
L
01–44
01: in cm 16: kg 31: cal
IT
J
02: cm
in
17:
°F °C
32: J
cal
IT
03: ft m
18:
°C °F
33: hp W
04: m
ft 19: gal (US) L 34: W hp
05: yd
m 20: L gal (US) 35: ps W
06: m
yd 21: gal (UK) L 36: W ps
07: mi
km 22: L gal (UK) 37: kgf/cm
2
Pa
08: km
mi 23: fl oz(US) mL 38: Pa kgf/cm
2
09: n mi m 24: mL fl oz(US) 39: atm Pa
10: m
n mi 25: fl oz(UK) mL 40: Pa atm
11: acre
m
2
26: mL fl oz(UK) 41: mmHg Pa
12: m
2
acre 27: cal
th
J 42: Pa mmHg
13: oz
g 28: J cal
th
43: kgf·m N·m
14: g
oz 29: cal
15
J 44: N·m kgf·m
15: lb
kg 30: J cal
15
17 N
(ENG)
100 m
×
10 k
=
?
100
N
3
4
k
10
N
3
0
=
1
'
000
.
18 n J
[FIX, TAB
=
1]
j
@
J
1
0
1
0
.
0
5
÷
9
=
ANS
5
z
9
=
5
9
U
0
.
6
ANS
×
9
=
k
9
=
*
1
5
.
0
5
z
9
=
5
9
U
0
.
6
[MDF]
@
n
3
5
ANS
×
9
=
k
9
=
*
2
2
5
5
U
U
5
.
4
[NORM1]
@
J
1
3
5
.
4
*
1
5
9
×
9 = 5.5555555555555
×
10
1
×
9
*
2
3
5
×
9 = 0.6 × 9
19 N
(ALGB)
f
(
x
)
=
x
3
3
x
2
+
2
j
;
X
@
1
-
3
;
X
A
+
2
x
=
1
N
1
S
1
e
-
2
.
x
=
0.5
N
1
S
0
.
5
e
1
1
8
A
2
+
B
2
@
*
;
A
A
+
;
B
A
A
=
2, B
=
3
N
1
2
e
3
e
H
13
A
=
2, B
=
5
N
1
e
5
e
H
29
20 N
(SOLVER)
sin
x
0.5
j
v
;
X
-
0
.
5
Start
=
0
N
2
0
e
e
30
.
Start
=
180
e
180
e
e
150
.
21 _ H R v p c g o Q
G s i j h f a b S
V U
DATA
95
80
80
75
75
75
50
b
1
0
@
Z
S#a# 0
[
SD
]
0
.
95
_
DATA SET=
1
.
80
_
DATA SET=
2
.
_
DATA SET=
3
.
75
H
3
_
DATA SET=
4
.
50
_
DATA SET=
5
.
x
=
t
R
x
=
75
.
71428571
σ
x
=
t
p
σ
x
=
12
.
37179148
n =
t
c
n=
7
.
Σx =
t
g
Σx=
530
.
Σx
2
=
t
o
Σx
2
=
41
'
200
.
sx =
t
v
sx=
13
.
3630621
sx
2
=
A
=
sx
2
=
178
.
5714286
(95
x
)
×
10
+
50
=
sx
(
95
&
;
R
)
z
;
v
k
10
+
50
=
64
.
43210706
24 N
( t, P
(
, Q
(
, R
(
)
DATA
x
F
20
30
40
50
60
70
80
90
1
3
5
8
13
10
7
3
b
1
0
@
Z
S#a# 0
[
SD
]
0
.
20
H
1
_
DATA SET=
1
.
30
H
3
_
DATA SET=
2
.
40
H
5
_
DATA SET=
3
.
50
H
8
_
DATA SET=
4
.
60
H
13
_
DATA SET=
5
.
70
H
10
_
DATA SET=
6
.
80
H
7
_
DATA SET=
7
.
90
H
3
_
DATA SET=
8
.
x
=
t
R
x
=
60
.
4
σx =
t
p
σx=
16
.
48757108
x
=
35
P(t)
?
N
2
35
N
1
)
=
0
.
061713
x
=
75
Q(t)
?
N
3
75
N
1
)
=
0
.
312061
x
=
85
R(t)
?
N
4
85
N
1
)
=
0
.
067845
t
=
1.5
R(t)
?
N
4
1
.
5
)
=
0
.
066807
25 b
(CPLX)
(12
6
i
)
+
(7
+
15
i
)
(11
+
4
i
)
=
b
3
12
-
6
O
+
7
+
15
O
-
(
11
+
4
O
)
=
8
.
+5
.
K
6
×
(7
9
i
)
×
(
5
+
8
i
)
=
6
k
(
7
-
9
O
)
k
(
S
5
+
8
O
)
=
222
.
+606
.
K
16
×
(sin 30°
+
i
cos 30°)
÷
(sin 60°
+
i
cos 60°)
=
16
k
(
v
30
+
O
$
30
)
z
(
v
60
+
O
$
60
)
=
13
.
85640646
+8
.
K
y
x
A
B
r
r
2
θ1
θ2
r
1
θ
r
1
=
8,
θ
1
=
70°
r
2
=
12,
θ
2
=
25°
r
=
?,
θ
=
@
u
8
Q
70
+
12
Q
25
=
18
.
5408873
42
.
76427608
1
+
i
r
=
?,
θ
=
@
E
1
+
O
=
1
.
+1
.
K
@
u
1
.
414213562
45
.
(2
3
i
)
2
=
@
E
(
2
-
3
O
)
A
=
-
5
.
-
12
.
K
1
1
+
i
=
(
1
+
O
)
@
Z
=
0
.
5
-
0
.
5
K
CONJ(5
+
2
i
)
=
N
1
(
5
+
2
O
)
=
5
.
-
2
.
K
EL-W506
EL-W516
EL-W546
sin 45
=
v
45
=
Q
2
2
U
0
.
707106781
2cos
1
0.5 [rad]
=
@
J
0
1
2
@
^
0
.
5
=
2
J
3
U
2
.
094395102
3
u
d
@
Z
0
.
3(5
+
2)
=
3
(
5
+
2
)
=
21
.
3
×
5
+
2
=
3
k
5
+
2
=
17
.
(5
+
3)
×
2
=
(
5
+
3
)
k
2
=
16
.
@
u
21
.
d
17
.
d
16
.
u
17
.
4
+
&
k
z
(
)
S
`
45
+
285
÷
3
=
j
45
+
285
z
3
=
140
.
(18
+
6)
÷
(15
8)
=
(
18
+
6
)
z
(
15
&
8
=
3
3
7
42
×
5
+
120
=
42
k
S
5
+
120
=
-
90
(5
×
10
3
)
÷
(4
×
10
3
)
=
5
`
3
z
4
`
S
3
=
1
'
250
'
000
.
5
34 + 57
=
34
+
57
=
91
.
45 + 57
=
45
=
102
.
68 × 25
=
68
k
25
=
1
'
700
.
68 × 40
=
40
=
2
'
720
.
6
v
$
t
w
^
y
s
H
>
i
l
O
"
V
Y
Z
A
1
*
m
D
q
B
e
c
a
W
@
P
0
0
.
sin 60 [°]
=
j
v
60
=
Q
3
2
U
0
.
866025403
cos
π
4
[rad]
=
@
J
0
1
$
@
s
W
4
=
Q
2
2
U
0
.
707106781
tan
1
1 [g]
=
@
J
0
2
@
y
1
=
50
.
@
J
0
0
(cosh 1.5
+
sinh 1.5)
2
=
j
(
H
$
1
.
5
+
H
v
1
.
5
)
A
=
20
.
08553692
5
tanh
1
⎯ =
7
@
>
t
(
5
z
7
)
=
0
.
895879734
ln 20
=
i
20
=
2
.
995732274
log 50
=
l
50
=
1
.
698970004
log
2
16384
=
@
O
2
r
16384
=
14
.
o
@
O
2
H
16384
)
=
14
.
e
3
=
@
"
3
=
20
.
08553692
1
÷
e
=
1
z
;
V
=
0
.
367879441
10
1.7
=
@
Y
1
.
7
=
50
.
11872336
1 1
⎯ + ⎯ =
6 7
6
@
Z
+
7
@
Z
=
13
42
U
0
.
309523809
d
(
x
4
0.5
x
3
+
6
x
2
)
dx
@
G
;
X
m
4
r
&
0
.
5
;
X
@
1
+
6
;
X
A
(
x
= 2
d
x
= 0.00002
r
2
=
50.
(
x
= 3
d
x
= 0.001
l
l
N
3
H
0
.
001
=
130.5000029
o
@
G
;
X
m
4
&
0
.
5
;
X
@
1
+
6
;
X
A
H
2
)
=
50.
l
l
N
3
H
0
.
001
=
130.5000029
8
I
5
x
=
1
(x + 2)
j
@
I
1
r
5
r
;
X
+
2
n
=
1
=
25
.
n
=
2
l
l
H
2
=
15
.
o
j
@
I
;
X
+
2
H
1
H
5
)
=
25
.
l
l
H
2
=
15
.
9
]
90° [rad]
j
90
@
]
1
J
2
[g]
@
]
100
.
[°]
@
]
90
.
sin
1
0.8 = [°]
@
w
0
.
8
=
53
.
13010235
[rad]
@
]
0
.
927295218
[g]
@
]
59
.
03344706
[°]
@
]
53
.
13010235
10 ;
t
x
m
M
<
[
]
T
X
I
J
K
L
8
×
2 M
j
8
k
2
x
M
16
.
24
÷
(8 × 2)
=
24
z
;
M
=
1
1
2
(8 × 2) × 5
=
;
M
k
5
=
80
.
0
M
j
x
M
0
.
$150
×
3 M
1
+
) $250: M
1
+
250 M
2
) M
2
×
5%
M
=
150
k
3
m
450
.
250
m
250
.
t
M
k
5
@
a
@
M
35
.
t
M
665
.
$1
=
¥110 (110 Y)
110
x
Y
110
.
¥26,510
=
$?
26510
z
;
Y
=
241
.
$2,750
=
¥?
2750
k
;
Y
=
302
'
500
.
r
=
3 cm (r Y)
3
x
Y
3
.
π
r
2
=
?
@
s
;
Y
A
=
U
28.27433388
24
4
+
6
=
2
2
5
…(A)
24
z
(
4
+
6
)
=
2
2
5
3
×
(A)
+
60
÷
(A)
=
3
k
;
<
+
60
z
;
<
=
1
32
5
π
r
2
F1
r
=
3 cm (r Y)
4
3
V
=
?
@
s
;
Y
A
x
[
j
F1
3
x
Y
3
.
t
[
k
4
z
3
=
U
37
.
69911184
sinh
1
D1
x
I
@
>
v
sinh
1
0.5
=
I
0
.
5
=
0
.
481211825
DATA
x
y
2
2
12
21
21
21
15
5
5
24
40
40
40
25
b
1
1
@
Z
S#a# 1
[
LINE
]
0
.
2
H
5
_
DATA SET=
1
.
_
DATA SET=
2
.
12
H
24
_
DATA SET=
3
.
21
H
40
H
3
_
DATA SET=
4
.
15
H
25
_
DATA SET=
5
.
a
=
t
a
a
=
1
.
050261097
b
=
t
b
b
=
1
.
826044386
r =
t
f
r=
0
.
995176343
sx
=
t
v
sx
=
8
.
541216597
sy
=
t
G
sy
=
15
.
67223812
x
=
3
y
´
=
?
3
@
U
3
y
´
6
.
528394256
y
=
46
x
´
=
?
46
@
V
46
x´
24
.
61590706
DATA
x
y
12
8
5
23
15
41
13
2
200
71
b
1
2
@
Z
S#a# 2
[
QUAD
]
0
.
12
H
41
_
DATA SET=
1
.
8
H
13
_
DATA SET=
2
.
5
H
2
_
DATA SET=
3
.
23
H
200
_
DATA SET=
4
.
15
H
71
_
DATA SET=
5
.
a
=
t
a
a
=
5
.
357506761
b
=
t
b
b
=
-
3
.
120289663
c =
t
S
c=
0
.
503334057
x
=
10
y
´
=
?
10
@
U
10
y
´
24
.
4880159
y
=
22
x
´
=
?
22
@
V
22
x
´
1
:
2
:
9
.
63201409
-
3
.
432772026
22 _ H u d #
DATA
20
30
40
40
50
DATA
30
45
45
45
60
b
1
0
@
Z
S#a# 0
[
SD
]
0
.
20
_
DATA SET=
1
.
30
_
DATA SET=
2
.
40
H
2
_
DATA SET=
3
.
50
_
DATA SET=
4
.
d
@
#
DATA SET=
3
.
d
d
d
45
_
X:
45
.
3
_
F:
3
.
d
60
_
X:
60
.
j
23
x
=
Σ
x
n
σx
=
Σ
x
2
nx
2
n
sx =
Σ
x
2
nx
2
n
1
Σ
x
=
x
1
+
x
2
+
+
x
n
Σ
x
2
=
x
1
2
+
x
2
2
+
+
x
n
2
y
=
Σ
y
n
σy
=
Σ
y
2
ny
2
n
sy =
Σ
y
2
ny
2
n
1
Σ
xy
=
x
1
y
1
+
x
2
y
2
+
+
x
n
y
n
Σ
y
=
y
1
+
y
2
+
+
y
n
Σ
y
2
=
y
1
2
+
y
2
2
+
+
y
n
2