Data Sheet: Supereta
TM
iQN Series –Single Output Quarter Brick
©2005-2006 TDK Innoveta Inc.
iQN 35V/6A/-0A9 Datasheet Issue 1.2 4/8/2008
℡
(877) 498
-
0099
10/15
performance page for the power module of
interest. In all conditions, the power module
should be operated below the maximum
operating temperature shown on
the derating curve. For improved design
margins and enhanced system reliability, the
power module may be operated at
temperatures below the maximum rated
operating temperature.
Heat transfer by convection can be
enhanced by increasing the airflow rate that
the power module experiences. The
maximum output current of the power
module is a function of ambient temperature
(T
AMB
) and airflow rate as shown in the
thermal performance figures on the thermal
performance page for the power module of
interest. The curves in the figures are
shown for 1m/s (200 ft/min) to 3 m/s (600
ft/min). In the final system configurations,
the airflow rate for the natural convection
condition can vary due to temperature
gradients from other heat dissipating
components.
Heatsink Usage: For applications with
demanding environmental requirements,
such as higher ambient temperatures or
higher power dissipation, the thermal
performance of the power module can be
improved by attaching a heatsink or cold
plate. The iQN platform is designed with a
base plate with two M3 X 0.5 through-
threaded mounting fillings for attaching a
Heatsink or cold plate. The addition of a
heatsink can reduce the airflow requirement;
ensure consistent operation and extended
reliability of the system. With improved
thermal performance, more power can be
delivered at a given environmental condition.
Standard heatsink kits are available from
TDK Innoveta Inc for vertical module
mounting in two different orientations
(longitudinal – perpendicular to the direction
of the pins and transverse – parallel to the
direction of the pins). The heatsink kit
contains four M3 x 0.5 steel mounting
screws and a precut thermal interface pad
for improved thermal resistance between the
power module and the heatsink. The
screws should be installed using a torque-
limiting driver set between 0.35-0.55 Nm (3-
5 in-lbs).
The system designer must use an accurate
estimate or actual measure of the internal
airflow rate and temperature when doing the
heatsink thermal analysis. For each
application, a review of the heatsink fin
orientation should be completed to verify
proper fin alignment with airflow direction to
maximize the heatsink effectiveness. For
TDK Innoveta standard heatsinks, contact
TDK Innoveta Inc. for latest performance
data.