Cypress CY8C24123 Computer Hardware User Manual


 
CY8C24123
CY8C24223, CY8C24423
Document Number: 38-12011 Rev. *G Page 23 of 43
DC Analog Reference Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V
and -40
°C T
A
85°C, or 3.0V to 3.6V and -40°C T
A
85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and
are for design guidance only or unless otherwise specified.
The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to
the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control
register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block.
Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling
of the digital signal may appear on the AGND.
Table 20. 5V DC Analog Reference Specifications
Symbol Description Min Typ Max Units
BG Bandgap Voltage Reference 1.274 1.30 1.326 V
AGND = Vdd/2
a
CT Block Power = High
a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is 1.3V ± 2%.
Vdd/2 - 0.043 Vdd/2 - 0.025 Vdd/2 + 0.003 V
AGND = 2 x BandGap
a
CT Block Power = High 2 x BG - 0.048 2 x BG - 0.030 2 x BG + 0.024 V
AGND = P2[4] (P2[4] = Vdd/2)
a
CT Block Power = High P2[4] - 0.013 P2[4] P2[4] + 0.014 V
AGND = BandGap
a
CT Block Power = High BG - 0.009 BG + 0.008 BG + 0.016 V
AGND = 1.6 x BandGap
a
CT Block Power = High 1.6 x BG - 0.022 1.6 x BG - 0.010 1.6 x BG + 0.018 V
AGND Column to Column Variation (AGND =
Vdd/2)
a
CT Block Power = High
-0.034 0.000 0.034 V
RefHi = Vdd/2 + BandGap
Ref Control Power = High
Vdd/2 + BG - 0.140 Vdd/2 + BG - 0.018 Vdd/2 + BG +
0.103
V
RefHi = 3 x BandGap
Ref Control Power = High
3 x BG - 0.112 3 x BG - 0.018 3 x BG + 0.076 V
RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)
Ref Control Power = High
2 x BG + P2[6] -
0.113
2 x BG + P2[6] -
0.018
2 x BG + P2[6] +
0.077
V
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)
Ref Control Power = High
P2[4] + BG - 0.130 P2[4] + BG - 0.016 P2[4] + BG + 0.098 V
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)
Ref Control Power = High
P2[4] + P2[6] - 0.133 P2[4] + P2[6] -
0.016
P2[4] + P2[6]+
0.100
V
RefHi = 3.2 x BandGap
Ref Control Power = High
3.2 x BG - 0.112 3.2 x BG 3.2 x BG + 0.076 V
RefLo = Vdd/2 – BandGap
Ref Control Power = High
Vdd/2 - BG - 0.051 Vdd/2 - BG + 0.024 Vdd/2 - BG + 0.098 V
RefLo = BandGap
Ref Control Power = High
BG - 0.082 BG + 0.023 BG + 0.129 V
RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)
Ref Control Power = High
2 x BG - P2[6] -
0.084
2 x BG - P2[6] +
0.025
2 x BG - P2[6] +
0.134
V
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)
Ref Control Power = High
P2[4] - BG - 0.056 P2[4] - BG + 0.026 P2[4] - BG + 0.107 V
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)
Ref Control Power = High
P2[4] - P2[6] - 0.057 P2[4] - P2[6] +
0.026
P2[4] - P2[6] +
0.110
V
[+] Feedback