Cypress CY7C1382F Computer Hardware User Manual


 
CY7C1380D, CY7C1382D
CY7C1380F, CY7C1382F
Document #: 38-05543 Rev. *F Page 9 of 34
Burst Sequences
The CY7C1380D/CY7C1382D/CY7C1380F/CY7C1382F
provides a two-bit wraparound counter, fed by A1: A0, that imple-
ments an interleaved or a linear burst sequence. The interleaved
burst sequence is designed specifically to support Intel Pentium
applications. The linear burst sequence is designed to support
processors that follow a linear burst sequence. The burst
sequence is user selectable through the MODE input.
Asserting ADV
LOW at clock rise automatically increments the
burst counter to the next address in the burst sequence. Both
read and write burst operations are supported.
Sleep Mode
The ZZ input pin is an asynchronous input. Asserting ZZ places
the SRAM in a power conservation sleep mode. Two clock cycles
are required to enter into or exit from this sleep mode. While in
this mode, data integrity is guaranteed. Accesses pending when
entering the sleep mode are not considered valid nor is the
completion of the operation guaranteed. The device must be
deselected prior to entering the sleep mode. CE
1
, CE
2
, CE
3
,
ADSP
, and ADSC must remain inactive for the duration of t
ZZREC
after the ZZ input returns LOW.
Table 2. Interleaved Burst Address Table (MODE = Floating
or VDD)
First
Address
A1: A0
Second
Address
A1: A0
Third
Address
A1: A0
Fourth
Address
A1: A0
00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00
Table 3. Linear Burst Address Table (MODE = GND)
First
Address
A1: A0
Second
Address
A1: A0
Third
Address
A1: A0
Fourth
Address
A1: A0
00 01 10 11
01 10 11 00
10 11 00 01
11 00 01 10
Table 4. ZZ Mode Electrical Characteristics
Parameter Description Test Conditions Min Max Unit
I
DDZZ
Sleep mode standby current ZZ > V
DD
– 0.2V 80 mA
t
ZZS
Device operation to ZZ ZZ > V
DD
– 0.2V 2t
CYC
ns
t
ZZREC
ZZ recovery time ZZ < 0.2V 2t
CYC
ns
t
ZZI
ZZ Active to sleep current This parameter is sampled 2t
CYC
ns
t
RZZI
ZZ Inactive to exit sleep current This parameter is sampled 0 ns
[+] Feedback