www.ezurio.com
4. I/O Characteristics
4.1 Power Consumption
The current drain from the Vcc power input line is dependent on various factors. The three most
significant factors are the voltage level at Vcc, UART Baudrate and the operating mode.
The hardware specification for the Module allows for a voltage range of 3.6 to 7.0 at Vcc. Tests have
shown that there is no significant difference in current draw when Vcc is 5 or 6V. Therefore the data
presented below, pertains to Vcc levels of 3.6 and 5v only. Tests have shown that where power drain
is an issue, it is best to keep Vcc at the lower end of the range.
The UART baudrate has a bearing on power drain because as is normal for digital electronics, the
power requirements increase linearly with increasing clocking frequencies. Hence higher baudrates
result in a higher current drain.
Finally with regards to operating mode the significant modes are; idle, waiting for a connection,
inquiring, initiating a connection, sniff and connected. With connected mode, it is also relevant to
differentiate between no data being transferred and when data is being transferred at the maximum
rate possible. The AT command Set document describes how to configure the Module for optimal
power performance.
4.1.1 Typical Current Consumption in mA
Baudrate
9,600 38,400 115,200 460,800
3.6v 1.60 1.80 1.96 3.00 Idle Mode, S512=1
5.0v 2.00 2.10 2.30 3.40
3.6v 59.00 59.00 59.00 59.00 Wait for Connection Or Discoverable Mode,
AT+BTP
S508=S510=640, S509=S511=320
5.0v 65.00 65.00 65.00 65.00
3.6v 2.75 2.94 3.10 4.12 Wait for Connection Or Discoverable Mode,
AT+BTP
S508=S510=1000, S509=S511=11*
5.0v 3.26 3.36 3.55 4.63
3.6v 50.00 50.00 50.00 50.00 Inquiring Mode, AT+BTI
5.0v 54.00 54.00 54.00 54.00
3.6v 50.00 50.00 50.00 50.00 Connecting Mode (ATDxxx)
5.0v 54.00 54.00 54.00 54.00
3.6v 6.00 6.10 6.40 7.20 Connected Mode (No Data Transfer)
5.0v 7.20 7.20 7.40 8.20
3.6v 21.50 22.50 24.50 32.50 Connected Mode (Max Data Transfer)
5.0v 24.50 26.00 28.00 36.00
Notes: These figures were obtained with pre-production firmware. Production values will typically be
20% lower.
* Calculated figures