Intel BX80635E51660V2 Computer Hardware User Manual


 
Electrical Specifications
156 Intel® Xeon® Processor E5-1600 v2/E5-2600 v2 Product Families
Datasheet Volume One of Two
The specification provided in the table shows the maximum pulse duration allowed for a
given overshoot/undershoot magnitude at a specific activity factor. Each table entry is
independent of all others, meaning that the pulse duration reflects the existence of
overshoot/undershoot events of that magnitude ONLY. A platform with an
overshoot/undershoot that just meets the pulse duration for a specific magnitude
where the AF < 0.1, means that there can be no other overshoot/undershoot events,
even of lesser magnitude (note that if AF = 0.1, then the event occurs at all times and
no other events can occur).
7.9.5.4 Reading Overshoot/Undershoot Specification Tables
The overshoot/undershoot specification for the processor is not a simple single value.
Instead, many factors are needed to determine the over/undershoot specification. In
addition to the magnitude of the overshoot, the following parameters must also be
known: the width of the overshoot and the activity factor (AF). To determine the
allowed overshoot for a particular overshoot event, the following must be done:
1. Determine the signal group a particular signal falls into.
2. Determine the magnitude of the overshoot or the undershoot (relative to VSS).
3. Determine the activity factor (How often does this overshoot occur?).
4. Next, from the appropriate specification table, determine the maximum pulse
duration (in nanoseconds) allowed.
5. Compare the specified maximum pulse duration to the signal being measured. If
the pulse duration measured is less than the pulse duration shown in the table,
then the signal meets the specifications.
Undershoot events must be analyzed separately from overshoot events as they are
mutually exclusive.
7.9.5.5 Determining if a System Meets the Overshoot/Undershoot
Specifications
The overshoot/undershoot specifications listed in the table specify the allowable
overshoot/undershoot for a single overshoot/undershoot event. However most systems
will have multiple overshoot and/or undershoot events that each have their own set of
parameters (duration, AF and magnitude). While each overshoot on its own may meet
the overshoot specification, when you add the total impact of all overshoot events, the
system may fail. A guideline to ensure a system passes the overshoot and undershoot
specifications is shown below.
1. If only one overshoot/undershoot event magnitude occurs, ensure it meets the
over/undershoot specifications in the following tables, OR
2. If multiple overshoots and/or multiple undershoots occur, measure the worst case
pulse duration for each magnitude and compare the results against the AF = 0.1
specifications. If all of these worst case overshoot or undershoot events meet the
specifications (measured time < specifications) in the table (where AF= 0.1), then
the system passes.