Texas Instruments TI-89 Calculator User Manual


 
502 Appendix A: Functions and Instructions
8992APPA.DOC TI-89 / TI-92 Plus: Appendix A (US English) Susan Gullord Revised: 02/23/01 1:48 PM Printed: 02/23/01 2:21 PM Page 502 of 132
sin
ê
(squareMatrix1)
squareMatrix
Returns the matrix inverse sine of
squareMatrix1
. This is
not
the same as
calculating the inverse sine of each element.
For information about the calculation
method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode and Rectangular
complex format mode:
sin
ê
([1,5,3;4,2,1;6,
ë
2,1])
¸
ë
.164…
ì
.064…
ø
i
1.490…
ì
2.105…
ø
i
.725…
ì
1.515…
ø
i
.947…
ì
.778…
ø
i
2.083…
ì
2.632…
ø
i
ë
1.790…+1.271…
ø
i
sinh()
MATH/Hyperbolic menu
sinh(expression1)
expression
sinh(list1)
list
sinh (expression1)
returns the hyperbolic sine
of the argument as an expression.
sinh (list)
returns a list of the hyperbolic sines
of each element of
list1
.
sinh(1.2)
¸
1.509
...
sinh({0,1.2,3.})
¸
{0 1.509
...
10.017
...
}
sinh(squareMatrix1)
squareMatrix
Returns the matrix hyperbolic sine of
squareMatrix1
. This is
not
the same as
calculating the hyperbolic sine of each
element. For information about the
calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode:
sinh([1,5,3;4,2,1;6,
ë
2,1])
¸
360.954 305.708 239.604
352.912 233.495 193.564
298.632 154.599 140.251
sinh
ê
()
MATH/Hyperbolic menu
sinh
ê
(expression1)
expression
sinh
ê
(list1)
list
sinh
ê
(expression1)
returns the inverse
hyperbolic sine of the argument as an
expression.
sinh
ê
(list1)
returns a list of the inverse
hyperbolic sines of each element of
list1
.
sinh
ê
(0)
¸
0
sinh
ê
({0,2.1,3})
¸
{0 1.487
...
sinh
ê
(3)}
sinh
ê
(squareMatrix1)
squareMatrix
Returns the matrix inverse hyperbolic sine of
squareMatrix1
. This is
not
the same as
calculating the inverse hyperbolic sine of
each element. For information about the
calculation method, refer to
cos()
.
squareMatrix1
must be diagonalizable. The
result always contains floating-point
numbers.
In Radian angle mode:
sinh
ê
([1,5,3;4,2,1;6,
ë
2,1])
¸
.041… 2.155… 1.158…
1.463… .926… .112…
2.750…
ë
1.528… .572…