SMC Networks SMC8612XL3 F 1.0.1.3 Switch User Manual


 
D
ESCRIPTION
OF
S
OFTWARE
F
EATURES
1-7
except where a connection is explicitly defined via the switch’s routing
service.
Use private VLANs to restrict traffic to pass only between data ports
and the uplink ports, thereby isolating adjacent ports within the same
VLAN, and allowing you to limit the total number of VLANs that need
to be configured.
Traffic Prioritization – This switch prioritizes each packet based on the
required level of service, using four priority queues with strict or Weighted
Round Robin Queuing. It uses IEEE 802.1p and 802.1Q tags to prioritize
incoming traffic based on input from the end-station application. These
functions can
be used to provide independent priorities for delay-sensitive
data and best-effort data.
This switch also supports several common methods of prioritizing layer 3/
4 traffic to meet application requirements. Traffic can be prioritized based
on the priority bits in the IP frame’s Type of Service (ToS) octet. When
these services are enabled, the priorities are mapped to a Class of Service
value by the switch, and the traffic then sent to the corresponding output
queue.
IP Routing – The switch provides Layer 3 IP routing. To maintain a high
rate of throughput, the switch forwards all traffic passing within the same
segment, and routes only traffic that passes between different
subnetworks. The wire-speed routing provided by this switch lets you
easily link network segments or VLANs together without having to deal
with the bottlenecks or configuration hassles normally associated with
conventional routers.
Routing for unicast traffic is supported with the Routing Information
Protocol (RIP) and the Open Shortest Path First (OSPF) protocol.
RIP – This protocol uses a distance-vector approach to routing. Routes are
determined on the basis of minimizing the distance vector, or hop count,
which serves as a rough estimate of transmission cost.