Appendix A: Functions and Instructions 797
cot() MATH/Trig menu
cot(
expression1
) ⇒
⇒⇒
⇒
expression
cot(
list1
) ⇒
⇒⇒
⇒
list
Returns the cotangent of
expression1
or returns a
list of the cotangents of all elements in
list1
.
Note: The result is returned as a degree, gradian
or radian angle, according to the current angle
mode setting.
In Degree angle mode:
cot(45) ¸ 1
In Gradian angle mode:
cot(50) ¸ 1
In Radian angle mode:
cot({1,2.1,3}) ¸
{
1
tan(1)
L.584…
1
tan(3)
}
cot
L
LL
L1
() MATH/Trig menu
cot
L
LL
L1
(
expression1
) ⇒
⇒⇒
⇒
expression
cot
L
LL
L1
(
list1
) ⇒
⇒⇒
⇒
list
Returns the angle whose cotangent is
expression1
or returns a list containing the
inverse cotangents of each element of
list1
.
Note: The result is returned as a degree, gradian
or radian angle, according to the current angle
mode setting.
In Degree angle mode:
cot
L1
(1) ¸ 45
In Gradian angle mode:
cot
L1
(1) ¸ 50
In Radian angle mode:
cot
L1
(1) ¸
p
4
coth() MATH/Hyperbolic menu
coth(
expression1
) ⇒
⇒⇒
⇒
expression
cot(
list1
) ⇒
⇒⇒
⇒
list
Returns the hyperbolic cotangent of
expression1
or returns a list of the hyperbolic cotangents of all
elements of
list1
.
coth(1.2) ¸ 1.199…
coth({1,3.2}) ¸
{
1
tanh(1)
1.003…
}
coth
L
LL
L1
() MATH/Hyperbolic menu
coth
L
LL
L1
(
expression1
) ⇒
⇒⇒
⇒
expression
coth
L
LL
L1
(
list1
) ⇒
⇒⇒
⇒
list
Returns the inverse hyperbolic cotangent of
expression1
or returns a list containing the
inverse hyperbolic cotangents of each element of
list1
.
coth
L1
(3.5) ¸ .293…
coth
L1
({L2,2.1,6}) ¸
{
Lln(3)
2
.518…
ln(7/5)
2
}
crossP() MATH/Matrix/Vector ops menu
crossP(
list1
,
list2
) ⇒
⇒⇒
⇒
list
Returns the cross product of
list1
and
list2
as a list.
list1
and
list2
must have equal dimension, and the
dimension must be either 2 or 3.
crossP({a1,b1},{a2,b2}) ¸
{0 0 a1øb2ì a2øb1}
crossP({0.1,2.2,ë 5},{1,ë.5,0})
¸
{ë 2.5 ë5. ë 2.25}
crossP(
vector1
,
vector2
) ⇒
⇒⇒
⇒
vector
Returns a row or column vector (depending on
the arguments) that is the cross product of
vector1
and
vector2
.
Both
vector1
and
vector2
must be row vectors, or
both must be column vectors. Both vectors must
have equal dimension, and the dimension must
be either 2 or 3.
crossP([1,2,3],[4,5,6]) ¸
[ë3 6 ë3]
crossP([1,2],[3,4])
¸
[0 0 ë 2]