273
Missing Data
large number of parameters. In addition, some missing data value patterns can make it
impossible in principle to fit the saturated model even if it is possible to fit your model.
With incomplete data, Amos Graphics tries to fit the saturated and independence
models in addition to your model. If Amos fails to fit the independence model, then fit
measures that depend on the fit of the independence model, such as CFI, cannot be
computed. If Amos cannot fit the saturated model, the usual chi-square statistic cannot
be computed.
Results of the Analysis
Text Output
For this example, Amos succeeds in fitting both the saturated and the independence
model. Consequently, all fit measures, including the chi-square statistic, are reported.
To see the fit measures:
E Click Model Fit in the tree diagram in the upper left corner of the Amos Output window.
The following is the portion of the output that shows the chi-square statistic for the
factor analysis model (called Default model), the saturated model, and the
independence model:
The chi-square value of 11.547 is not very different from the value of 7.853 obtained
in Example 8 with the complete dataset. In both analyses, the p values are above 0.05.
Parameter estimates, standard errors, and critical ratios have the same interpretation
as in an analysis of complete data.
CMIN
Model NPAR CMIN DF P CMIN/DF
Default model 19 11.547 8 .173 1.443
Saturated model 27 .000 0
Independence model 6 117.707 21 .000 5.605